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substances have only few reflections, while at lower 
d values, where the density of peaks is higher, the 
proposed arrangement shows a much better resol- 
ution. The superior performance of the mosaic,crystal 
monochromator becomes even more evident if the 
resolution functions are compared to the limit that is 
set by the particle-size broadening from the sample. 
Ad/d cannot exceed the value given by d / D  where 
D is the thickness of the particle. In Fig. 10 a particle 
thickness of 1 Ixm was chosen. While the curve for 
the mosaic monochromator comes close to this limit 
the curves for the conventional optics and that of the 
particle-size limit diverge. The performance of the 
perfect-crystal monochromator is only better in the 
focusing minimum where it goes even below the par- 
ticle-size limit. 

Taking coarser grains is no real solution since then 
they could in principle be better investigated by 
single-crystal diffraction at a synchrotron-radiation 
source (Bachmann, Kohler, Schulz & Weber, 1985), 
avoiding overlapping reflections. 

Concluding remarks 

The resolution functions for different types of angle 
dispersive powder diffractometers in parallel-beam 
geometry have been calculated and compared with 
experimental values. It is shown that perfect-crystal 
monochromators at a low Bragg angle are not ideally 
suited to very high-resolution work although their 
performance is superior to diffractometers at conven- 
tional sources using focusing geometry. Therefore, a 
new arrangement employing mosaic crystals at angles 
close to backscattering is proposed, giving a resol- 
ution function close to the limit set by the particle-size 
broadening. Such an instrument would give the high- 
est possible resolution that can be obtained with a 
polycrystalline sample. 
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Abstract 

The crystallographic nature of a quasicrystal structure 
is expressed in terms of the possibility of labeling 
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'translationally' equivalent atomic positions by a set 
of n integers. The corresponding position vectors are 
integral linear combinations of n basic ones generat- 
ing a vector module M of rank n and dimension m. 
Because of the aperiodic nature of the quasicrystal, 
n is larger than m. Typical values observed in nature 
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are m = 3  and n = 5  or n = 6 .  Lattice symmetry is 
recovered by embedding the quasicrystal in an n- 
dimensional space (the superspace) in such a way 
that M is the projection of a lattice 2. The rotational 
symmetries of the quasicrystal are included in those 
of the vector module M and, after embedding, appear 
as n-dimensional rotations leaving -Y invariant and 
a corresponding Euclidean metric. Scaling sym- 
metries are also possible in the atomic point-like 
approximation of a quasicrystal. In that case, enlarg- 
ing by a given constant factor all the distances 
between 'translationally' equivalent atoms, the 
'inflated' pattern still belongs to the original one: the 
occupied atomic positions in space are transformed 
into other ones also occupied in the original structure. 
This is called inflation procedure (of a scaling 
invariant pattern), the reverse transformation being 
a deflation. The module M is then invariant with 
respect to such discrete dilatations. In the superspace 
these correspond to crystallographic point-group 
transformations leaving the lattice -Y and an indefinite 
metric invariant. Scaling symmetries in space appear 
as hyperbolic rotations in the superspace. In these 
non-Euclidean rotations the improper ones are 
included. The compatibility between the two types of 
n-dimensional point-group symmetries (Euclidean 
and non-Euclidean rotations) is discussed both at the 
level of the quasicrystal structure and of that of the 
double metrical nature of the translational lattice 2. 
For a characterization of the symmetry of the quasi- 
crystal, one eventually arrives at the concept of the 
scale-space group, which includes as its Euclidean 
subgroup an n-dimensional space group (the super- 
space group). Examples are taken from aperiodic 
tilings admitting inflation-deflation symmetry. The 
vertices of these tilings are supposed to represent 
'translationally' equivalent atomic positions. A num- 
ber of basic concepts not expected to be familiar to 
crystallographers, even if explained in the text, are 
also listed and defined in an Appendix. 

I. Introduction 

Caroline MacGillavry reveals in her work sensitivity 
to the beauty of geometrical symmetry seen through 
the mind at different levels. In her paper on M. C. 
Escher's graphic work there are three levels and she 
writes (MacGillavry, 1986): 

'It is essential to distinguish between the two- 
dimensional symmetry of the print itself and the sym- 
metry of the three-dimensional object it represents, 
and that of the image the print evokes in the mind'. 

The aim of the present paper is to stress that quasi- 
crystals are three-dimensional drawings by nature of 
higher-dimensional objects, which evoke in our minds 
the presence of still more symmetries and harmonies. 

The present framework and the provisional charac- 
ter of the insights the author has on quasicrystal 

structures impose an exploratory character of an 
exposition based more on ideas and examples than 
on theory and proofs. In particular, elements of the 
octagonal quasicrystal phase (Kuo, 1987, 1990) will 
be used as illustration. 

2. Indexing quasicrystal tilings 

A geometrical description of a crystal in terms of 
atomic positions or of charge density can be done 
because of lattice translational symmetry, in terms of 
a unit cell which can be identified with a tile (the 
prototile) and of a filling of that unit cell, which then 
appears as a 'decoration' of the tile. 

The theory of tilings (Grtinbaum & Shepard, 1987), 
on the other hand, is much more general than that 
of monohedral periodic tiling (based on a single 
prototile) but most investigations are restricted to the 
two-dimensional case. 

On the other hand, crystals are more general than 
simply periodic ones, as one knows after the discovery 
of incommensurate crystal structures, to which quasi- 
crystals belong (see e.g. Janssen & Janner, 1987, and 
references therein). The description of their structure 
in terms of atomic positions and of charge density is 
much more involved than in the commensurate crystal 
case. Within the superspace approach, lattice perio- 
dicity is recovered by embedding the quasicrystal 
structure in a higher-dimensional space. The com- 
plexity is then hidden in the non-trivial relation 
between the Euclidean higher-dimensional crystal- 
lography and the original (lower-dimensional) 
structure. 

The images one gets from high-resolution electron 
microscopy of quasicrystals are not directly interpret- 
able in terms of atomic positions. Intriguingly 
enough, one recognizes a tiling structure compatible 
with the projection of part of the points of the higher- 
dimensional lattice of the embedded quasicrystal 
structure. It is essentially what one gets from the 
'strip-projection method', where the strip describes 
the pre-image of the projected points. The strip is 
commonly the direct product of the physical space 
with the projection of a lattice unit cell on the 
orthogonal complement space, called internal space 
within the superspace approach. 

Here very little will be assumed about that strip 
region except that it should give rise to an indexable 
tiling; this means that the position vectors of the 
vertices generate a free 7/ module M--=7/r. This is 
equivalent to a unique labeling (depending on the 
choice of the origin and of the basis) of those vertices 
by a finite set of integers ( n l , n 2 , . . . , n r ) .  The 
dimension of M is that of the tiling, i.e. that of the 
real vector space generated by M, whereas the number 
r of free generators is the rank of M. Figs. 1 and 2 
illustrate that situation for the case of the octagonal 
phase considered as two-dimensional quasicrystal 
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Fig. 1. High-resolution electron-micrograph image of the octag- 
onal phase in Cr-Ni-Si alloy (a) and corresponding two- 
dimensional octagonal tiling (b). From a poster by K. H. Kuo 
distributed at the XIV IUCr Congress in Perth, Australia, 1987. 
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Fig. 2. Indexing of the vertices of the octagonal tiling of Fig. 1 
according to a rank 4 vector module M with basis at, a2, a 3 
and a4. 

structure,  which is periodic along the third dimension.  
The periodic direction will be disregarded.  Fig. 1 
illustrates the type of  tiling observed in high-resol- 
ution e lectron-microscopy pictures. Fig. 2 indicates 
the corresponding indexing of  the vertices according 
to a two-dimensional  rank  4 module  M generated by 
the vectors a l ,  a2, a3, a4. 

The vertices are points at positions given by 
vectors n: 

4 

n =  ~ niai, integers ni, (2.1) 
i = 1  

and define an octagonal  tiling which is selfsimilar as 
i l lustrated in Fig. 3. In the corresponding inflat ion- 
deflation procedure  the two prototiles Q (the square)  
and R (the rhombus)  are t rans formed into inflated 
ones Q* and R*,  respectively, according to the rule 

Q*=3Q+4R and R*=2Q+3R (2.2) 

as one finds in Fig. 4. I f  one considers Q and R as 
free generators  of  a tile module ,  the corresponding 
t ransformat ion  matr ix T has eigenvalues given by the 
square of  A~ = 21/2+ 1 and A2 = 21/2-1 ,  where A~ and 

Fig. 3. Self-similarity of the octagonal tiling. 

Fig. 4. Inflation-deflation rules for the prototiles Q (square) and 
R (rhombus). 
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A2 are the l inear scaling factors for inflation and 
deflation, respectively; 

The possibil i ty of  having an inf lat ion-deflat ion rule 
is based on a scaling invar iance of  the vector module  
M under ly ing the pattern and is, accordingly,  
expressible as au tomorphism S of M, i.e. as 4 × 4  
integral invertible matrix F(S)  when referred to the 
basis a l , . . . , a 4 :  

4 

S a , =  ~ ajFj-,(S)= Aa,. (2.4) 
j ~ l  

As one can read from Fig. 5, the scaling matrix 
describing dilatat ion by a scaling factor A = 2 1 / 2 +  1 
is given by 

1 1 0 i) 
1 1 1 0 

I ' ( S ) =  0 1 1 1 " (2.5) 

i o 1 1 

The same tiling also admits  rotational symmetries  
generated by a 45 ° rotation R, and a mirror R2. Again, 
that is due to a rotational invariance of  the vector 
module  M: 

4 

R a , =  ~. a ) ~ ( R ) ,  R ~ O(2), (2.6) 
j-~ I 

with F(R)  integral invertible (Fig. 6). The matrices 
expressing R~ and R2 are then given by (o o o 

1 0 0 
F ( R , ) =  0 1 0 

0 0 1 0 

and (2.7) 

r ( R 2 ) =  
(0 0 0 i) 0 0 1 

0 1 0 

1 0 0 

Note that in both cases the converse is not true: we 
mean by this that rotational and scaling invariance 
of  M do not imply a corresponding symmetry of the 
tiling. Indeed,  the module  M describes possible posi- 
tions, whereas the vertices of tiling consist of  the 
occupied positions only. Of  course, one can restrict 
considerat ions to the symmetr ies  of  the tiling only. 
In the spirit of  Carol ine MacGil lavry,  however, it is 
essential to take into account the symmetries  of  the 
under lying vector module  M also. 

For M we have identified two holohedral  point  
groups, a rotational one HR with elements R of  0 (2 )  

such that 

R M  = M, R ~ 0(2 )  (2.8) 

and a scaling one Hs with elements S as above: 

SM = A ( S ) M  = M (2.9) 

with h (S) a real number  different from zero and from 
one, describing thus a discrete dilatation• 

In general,  scaling symmetr ies  may involve the 
combina t ion  of  a di latat ion (or of  a contraction) with 
a rotation. Such t ransformat ions  are called 
homotheties ,  the rotational symmetries  being a 
special case. Accordingly,  the holohedral  scale-rota- 
tional point group HSR has elements T such that 

T M =  AM = M, T~ H(2) ,  (2.10) 

with H(2)  the group of  homothet ies  of  the two- 
d imensional  space. As 0 ( 2 )  is a subgroup of  H(2) ,  
so also HR is one of Hsn. 

Still another  level of  h idden  symmetries  of  the tiling 
appears  while consider ing it as arising from a projec- 
tion of a periodic h igher-d imensional  pattern and 
more precisely by consider ing the module  M of rank 
n as a project ion of an n-d imens iona l  lattice 2;. The 
reciprocal-latt ice 2 *  when projected onto the phy- 
sical space gives rise to a module  M* of  the same 
rank as M and describes the positions of  the Bragg 
peaks one gets from a diffraction of the vertices of 
the tiling. The concept of  'occupied '  positions in 
reciprocal space is then equivalent  with that of  con- 
sidering all Bragg reflections having intensities above 
a given threshold.  

In the usual superspace approach,  one gets the 
embedded  periodic pattern p~ giving rise to the tiling 
(here the vertices) described by p(r) by interpreting 

011] 

] 
0000 

Fig. 5. Scaling symmetry of the vector module M underlying the 
inflation-deflation invariance of the octagonal tiling. 

a, I a~ -a, la' m 

Fig. 6. Rotational symmetry transformations of the vector module 
M of the octagonal tiling. 
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the Fourier components of the two-dimensional tiling 
as those of an n-dimensional periodic one: 

F / "  2 F T  

p ( r )  <--> ~ ( h l , .  . . ,  h , ) -  ~ , ( h , , .  . . ,  h , )  ~--;' p~(r~) 

(2.11) 

where FT, denotes the n-dimensional Fourier trans- 
form. Because M* is the projection of 2 " ,  one gets 
the vertices as intersection of the lines appearing in 
the pattern ps with the physical space 

p ( r ) = p . ~ ( r s ) A  V. (2.12) 

Analogous considerations apply to the three- 
dimensional (or to the one-dimensional) quasicrystal 
case. In the present analysis the vertices are projec- 
tions of lattice points in the higher-dimensional space. 
The two approaches based on projection, the one in 
reciprocal space and the other in direct space, are 
equivalent because the structure in physical space is 
the same, but they are different: points are not lines. 
To avoid misunderstanding we will call the present 
one a direct superspace approach (Janner, 1989, 
1990a; Janner & Janssen, 1990), as opposed to the 
usual (reciprocal) superspace description. 

3. Superspace embedding 

Let us first consider the one-dimensional octagonal 
chain one gets by restriction to the vertices of the 
octagonal tiling lying on a line V ° parallel to al, 
which can be considered to describe a one- 
dimensional quasicrystal. These vertices are at 
positions (Fig. 7) 

n = n l b l + n 2 b  2 

with 

b l = a l  and b2=(l+21/2)a~ (3.1) 

and are thus indexed by two integers nl, n2, so that 
the occupied positions generate a set of possible ones 
and define a vector module M ° of dimension 1 and 
of rank 2. Embedding in superspace is possible on a 
square lattice ~o (see Fig. 8) with basis vectors 

b,.~ = (bl, b2) and b2.~ = (b2, -b , ) .  (3.2) 

The first components along V ° generate M °. The 
second ones generate another 7/ module, as con- 
sidered below, which spans the one-dimensional 

I 

0 O0 I 2 12 2 

=)bl m.!b? 

Fig. 7. A one-dimensional tiling generated by the vector module 
M ° = {b~, b2} with vertices belonging to those of  the octagonal 
tiling along a given line. 

space V~ (called internal) orthogonal to V °. The 
embedding chosen is such that the basis vectors bl.~ 
and b2.~ in the superspace Vs = V°0) V~ have the same 
length. So the metric tensor of the basis (3.2) is given 
by 

g ° = 2 ( 2 + 2 1 / 2 ) a 2 ( 1 0  01). (3.3) 

In Fig. 9 the lattice points are indicated which corre- 
spond to the occupied positions leading by projection 
to the atomic arrangement at the vertices of a 
(dihedral) tiling with prototiles bl and b2. The scaling 
symmetry of M ° is expressed by the inflation-defla- 
tion rule with scaling factors 2~/2+ 1 or 21/2-1. In 
the same way as in (2.2) we now have 

A* = B, B* = A + 2B (3.4) 

with A =  lb,l and B = lbd. 
The corresponding scaling transformation S is 

expressed by the same integral matrix, both with 
respect to the basis bl, b2 of M ° and to the basis b,s, 
b2s of 2; °, having determinant -1 ,  trace 2 and eigen- 
values 1 + 21/2: 

1 
0)_(sin   

0 - e  - x  coshx s i n h x ]  
(3.5) 

3/o 

bls 

3/o 

Fig. 8. Superspace embedding of  the rank 2 module M ° on a 
two-dimensional lattice ~o, which in the present case is a square 
lattice. 

,/ ' , / " 

/ " - ~  / /' " - 4 .  / 7'--. / ";~ . . . .  / ~ / / 

Fig. 9. Occupied lattice point positions giving by projection the 
vertices of the one-dimensional octagonal chain. 
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where - means matrix equivalency by conjugation 
with elements of G/(2, I~). The relation 

2 sinh X = 2 (3.6) 

corresponds to a (crystallographic) condition 
imposed on the last matrix transformation for leaving 
a two-dimensional lattice invariant. In order to obtain 
a better understanding of  the geometrical nature of 
S, once viewed as a superspace transformation, it 
is convenient to consider the two-dimensional 
Euclidean crystallography as a special case of a more 
general two-dimensional one, where the space is a 
plane admitting indefinite metric tensors also. 

4. Two-dimensional metrical crystallography 
The present ideas were first developed within the 
framework of crystallography of space-time (Janner 
& Ascher, 1969a, b, c). Here a similar approach 
appears because of the possibility of embedding 
quasicrystal structures in a superspace having in addi- 
tion to the Euclidean metric an indefinite metric as 
well. To deal with multimetricai spaces requires a 
more general crystallographic characterization than 
is usually adopted. This point of view is discussed in 
another paper (Janner, 1991). The motivation, 
however, is based on the need to admit scaling sym- 
metries in addition to the normal crystallographic 
ones described by a space group and this is the main 
concern of the present paper. For this reason, some 
of the basic ideas of a multimetrical crystallography 
are presented here in the simple two-dimensional 
case. Before doing that, one needs to know at least 
some typical elements of non-Euclidean crystallogra- 
phy compared to the familiar Euclidean ones. As 
already discussed a number of years ago in the paper 
mentioned above (Janner & Ascher, 1969a), that is 
possible within a general framework which deals with 
crystallographic laws, without the need to specify 
beforehand the character of the metric involved. 

The first basic concept is that of the symmetry of 
a lattice, expressed in terms of a holohedral point 
group leaving the lattice and an appropriate metric 
tensor invariant. A lattice is said to be isometric if it 
has a non-reducible point symmetry (i.e. referring the 
holohedral point group to a lattice basis gives rise to 
a non-reducible faithful integral representation). In 
that case the holohedral point group H contains a 
transformation R such that a lattice vector a and the 
transformed one Ra generate the space, in this case 
the plane. The non-isometric lattices can be derived 
from a combination of lower-dimensional isometric 
ones. 

The next concept is that of a natural lattice. A 
two-dimensional natural lattice is a particular 
isometric lattice which admits a basis al and a2 such 
that 

a2 = Ral for given R E H. (4.1) 

All other isometric lattices of the same dimension 
then follow from an operation known as centering. 
This approach can be generalized to n dimensions 
allowing one to derive n-dimensional crystallography 
from an Aujbauprinzip. 

If R is proper (det R = 1), then with respect to the 
basis (4.1) it takes the form 

F ( A ~ , ) = ( ~  - 1 ) ,  integer/z,  (4.2) 
/z 

and the corresponding natural lattice is denoted by 
M,~. If det R = -1 ,  then for the same basis it is given 
by 

I'(N.) = (~ lv) , integer v, (4.3) 

and the natural lattice is indicated by A,. In both 
cases a metric tensor of the basis a~, Ra, can be 
defined according to 

g~'= /z/2 and g,.= u/2 , (4.4) 

the corresponding binary integral quadratic form 
being denoted by 

(1,/z, 1) and (1, u , -1 ) ,  (4.5) 

respectively. Then A u is an automorph of g~, and N,  
a negautomorph of g,. Indeed one verifies the rela- 
tions 

['(A,,)g~,F(A~,)=g~, and ['(N~)g~F(N,)=-g~, 
(4.6) 

where the tilde means transposition, so that N2, is 
also an automorph of the quadratic form of g,. The 
quadratic forms (4.5) are positive definite for I/z] < 2 
and indefinite for l u l>0  and for ]/z]>2 (Figs. 10 and 
11). The ]/z] -- 2 case corresponds to the parabolic one 

a? 

y . i 

1 

d 

" ° "4 'I" • 

M} 

M~ 

'¢T 

a ,  
¢~'~ ,d. 

. . . .  ,~.# a , 
1 

M1 

Y" a 

Fig. 10. Natural  lattices of  the type M~, for  values o f  ~t = - 1 ,  0, 
1, 3 and 4. 
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and v = 0  is also a special case. In the indefinite 
metrical case, one easily constructs the lattices M,, 
and A~ in the following way. Consider an orthonor- 
mal coordinate system with basis vectors el and e2 
along the 'space' direction x and along the 'time' 
direction ct, respectively. Using for the lattice M,, the 
crystallographic condition 2 cosh g =/z, (4.1) with 
al = ael becomes a2 = (a/2)[l~el+(iz2-4)'/2e2]. In 
the same way for A~ with v = 2 sinh X, one gets corre- 
spondingly a2 = (a /2) [  ~,e~ + (u 2 + 4)~/2e2]. Thus, in the 
Euclidean representation, these lattices are rec- 
tangular for/x,  v even and rhombic for/x, u odd. 

The interest in this general approach is that crys- 
tallographic laws become more transparent because 
they are valid for arbitrary values of the integers /x 
and u and are not restricted to a finite number of 
cases (like in the hexagonal and square lattice cases) 
as occurs in Euclidean crystallography. 

As an example, consider the set of points invariant 
with respect to a point-group transformation A~,, 
having thus A~, as stabilizer. They form a lattice 
denoted by M~,,1 which contains M~, as a sublattice. 
(The same is correspondingly the case for N~, A~.~ 
and A~.) Then one finds the general law 

index (M~, c Mr,,, ) = I/z - 21 
and (4.7) 

index (A~c  A~.I) = [ul. 

This situation is depicted in Fig. 12 for low values of 
/z and v. For /z = - 1 ,  0, 1, one recognizes the well 
known Euclidean cases as obtained from the Cheshire 
symmetry (Hirshfeld, 1968) of the corresponding 
space groups p3, p4 and p6. We recall that the 
Cheshire group of a space group is its normalizer 
in the Euclidean group of the same dimension 
(Wondratschek, 1983). 

In the same way, the points having an A k site 
symmetry belong to a lattice M~,,k and those with N k 
site symmetry to a lattice A~,k. For those lattices 
analogous general laws can be formulated. 

Considering again the generator (3.5) of  the scaling 
transformation of the one-dimensional octagonal 
case, one recognizes the relation 

r ( s ) =  r(N2), i.e. S= N2. (~,.8) 

\ N1 \\\ / 

\ \ \\ 

A1 

_ •  . . . . . . . . . . . . .  a2 / 

/ / \  
1 

A2 

Fig. 11. Natural lattices of the type A~ for the values u = 1 and 2. 

Indeed, identifying the physical one-dimensional 
space V ° with one branch of the light cone and the 
internal space V~ with the other branch, one sees that 
to a discrete dilatation in V ° by e x there corresponds 
a contraction by - e  -X in V~, the invariance of the 
lattice being ensured by the integral condition (3.6) 
(Fig. 13). Note that the lattice, generated by the basis 
(3.2), is a square one (from the Euclidean point of 
view), whereas this is not the case for A2 as represen- 
ted in Fig. 11. The two lattices are actually equivalent 
and only differ in the choice of the reference system. 

Change of the reference system does not change 
the symmetry of a lattice: that is here also the case 
if one takes into proper account the metrical aspects. 
Consider 

S= N2~ I0(1, 1) (4.9) 

where I0(1, 1) is generated by the orthogonal group 
O(1, 1) isomorphic to the two-dimensional Lorentz 

Nij M0.t NU M3) M~,I 

A U A2.1 A3.1 

Fig. 12. Symmetry elements A~, of the corresponding lattices M,, 
for ~ = -1 ,  0, 1, 3 and 4. The same for the symmetry elements 
N~ and the lattices A~ for v = 1, 2 and 3. 

'Time' 

'ltg~l cone' 

Ol . 
a2S 

. . . . . . . . . . . . . . . . . . .  

Fig. 13. Orientation in the indefinite metric plane (with respect to 
the 'space' and 'time' axes) of  the square lattice giving by 
projection of the occupied positions the one-dimensional 
octagonal chain. (With respect to the corresponding Figs. 8 and 
9 one has b2 ,=a l ,  and b~, =a , , . I  The scaling matrix is 'now 
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group and the transformation I which interchanges 
' t ime' and 'space'  axes. A conjugation of S by an 
element T of IO(I, 1) corresponds to a change of 
reference system in the indefinite metric plane and 
does not change what we may call the scaling 
holohedry, but changes, of course, the metrical 
properties of 2; 0 = A2 when considered as a lattice in 
the Euclidean plane. The process of transforming A2 
by such a change of the indefinite metric frame to a 
lattice ~o isometric with respect to an Euclidean 
metric is called Euclidization. 

Fig. 14 illustrates the process of Euclidization for 
the lattice A2 transforming it to the Euclidean square 
lattice (see for comparison Figs. 11 and 13). Fig. 15 
illustrates the same process for the lattice At (= M3), 
also transformed into a square lattice Mo (=At) .  

The possibility of Euclidization illustrates hidden 
relations between Euclidean and non-Euclidean crys- 
tallography. The examples given are representative 
ones, in the sense that the same property is true in 
an infinite number of cases. Indeed, one has for 
example 

c 
M3.k Mo any k ~ ~'. (4.10) 

This relation simply says that the set of points 

I ~Slnha,VTCosh a.I 

V 

Vl ' / / /  

Fig.  14. E u c l i d i z a t i o n  o f  t he  s c a l i n g  i n v a r i a n t  l a t t i c e  A 2 f r o m  a 
r e c t a n g u l a r  to  a s q u a r e  la t t ice .  

~r~-/~, ~ ~  
_ . ~ jr,- \ Y 

x / , 

, • / /  , / 

Vl " I " /  ' / /  

"\\ / 
,, / , ICosh(x,S mh (x) 

A~ IMp) 

Fig. 15. Euclidization of the scaling invariant lattice A, (which 
coincides with M3). It is transformed from a rhombic to a square 
lattice by changing the reference frame. 

invariant with respect to a given scaling transfor- 
mation 

A _(0 
form a square lattice in an appropriate reference 
system. 

From an intuitive point of view, one understands 
well that the scaling properties of a given tiling (e.g. 
the octagonal one) are not independent of the rota- 
tional symmetries of the same tiling (the eightfold 
symmetry in the octagonal case). Euclidization is a 
technical means for making such a relation more 
explicit. 

Euclidization represents the deeper level where 
new symmetries become apparent,  as mentioned at 
the end of § 2. In the next section, that level of hidden 
symmetries in quasicrystals will be investigated 
further, always in the spirit of Caroline MacGillavry. 

5. Towards an optimal superspace embedding 

The embedding of a vector module M on a lattice ,~ 
in superspace is not unique even if one-to-one in the 
case that the dimension of the superspace is equal to 
the rank of M. Indeed, lattices having the same projec- 
tion on the physical space are equivalent with respect 
to the structure of the quasicrystal. 

This does not mean that all possible embeddings 
are equally well adapted from the point of view of a 
symmetry description in superspace. As people, in 
general, find that point difficult to grasp, let us give 
some nearly self-evident examples of comparable 
situations. 

First, the properties of a physical system are 
independent of the coordinate system adopted. 
Nevertheless, it makes a big difference if one works 
with symmetry-adapted coordinates or not. The most 
symmetric coordinate system, say an orthonormal 
one, is in general not symmetry adapted. So which is 
the best reference frame depends on the physical 
system and on the symmetries considered. 

Second, the crystal potential is not unique. It is 
always possible to adopt a gauge such that the only 
Euclidean symmetry of the potential is the identity, 
but again that is inconvenient. One always chooses 
the potential having the largest Euclidean symmetry 
possible and for a crystal one normally takes one 
having the symmetry of a space group. 

In the case of a superspace embedding, the situ- 
ation is subtle because what optimal embedding really 
means is a symmetry-adapted one, but it is not a priori 
clear which symmetries one has to consider. This fact 
has already been suggested by the title of the present 
paper. 

In what follows, we will assume that the relation 
between superspace and physical space is an 
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orthonormal projection (which one depends on 
whether the direct- or the reciprocal-space approach 
has been adopted). A non-orthogonal projection has 
been considered by Yamamoto (1990), but we are 
not yet able to discuss this possibility within the 
framework of the present paper. 

The rank 2 case suffices for explaining the ideas 
and if not explicitly stated otherwise we will assume 
a Euclidean superspace. 

5.1. Direct and reciprocal vector modules 

Consider the following direct and reciprocal one- 
dimensional rank 2 vector modules: 

M={a~,a2} and M* = {a*, a*}. (5.1) 

A general (orthogonal) superspace embedding on 
dual bases for the lattices £ and 2" ,  respectively, 
has the form 

al., = ( a l ,  a , , )  a2~ = (a2, a,2)  
(5.2) 

a*~ = (a*,  a ' l )  a*~ = (a*,  a*2). 

The projection on the first (external) components 
yields the generators of the two vector modules M 
and M*. The projection on the second (internal) 
components generates two other vector modules 
(called internal)" 

Mt={a~ ,a~2)  and M*={a*l,a*2}. (5.3) 

Duality between the two bases of (5.2) implies the 
interesting relation: 

M ~ M *  and M * ~ M ,  (5.4) 

where two modules only differing by a constant factor 
are considered to be equivalent. This relation explains 
many of the crystallographic peculiarities of the inter- 
nal space versus the external one, for both direct and 
reciprocal spaces. 

The point is now that, if one adopts the standard 
embedding used for modulated crystal structures, 
where a* generates the main reflections (here in one 
dimension) and a* -- q is the modulation wave vector, 
one has 

a, ,  = ( a , , - ( a ~  . q ) d )  az, = (0, d) 
(5.5) 

a*~ = (a*,  0) a*, = (a* ,  d*) .  

Note that now a2 vanishes, so that M is no longer a 
rank 2 module. In this case one would never recognize 
the existence of a duality relation between internal 
and external space. The meaning of M for a modu- 
lated structure is clear, but its relevance obscure, 
whereas in the case of a quasicrystal M plays an 
important role. For quasicrystals, the choice of the 
embedding (5.5) is not justified, from both the experi- 
mental and the conceptual points of view, because 
there is no separation into a lattice of main reflections 
and a set of additional satellite reflections. 

5.2. Isometric lattice embedding: Euclidization 

As already stressed in previous papers (Janner, 
1986, 1988, 1989) and illustrated by the example of 
a superspace embedding of a Fibonacci chain on a 
square lattice, it is always possible to embed a high- 
symmetry vector module on a less-symmetric lattice, 
but the converse is not true. In particular, embedding 
on isometric lattices ,~ and ,~* giving by orthogonai 
projection the vector modules M and M*, respec- 
tively, imposes restrictions. For understanding the 
structural meaning of the non-reducible point-group 
elements of the holohedry of an isometric lattice 
additional concepts are needed. 

In particular, concepts like 'multimetrical space' 
and 'Euclidization' represent a key for further under- 
standing. A full treatment of these concepts lies bey- 
ond the aim of the present paper. Only some basic 
ideas will be presented here, together with some 
simple cases as illustration. 

Consider a quasicrystal with a vector module M 
admitting both a rotational holohedry HR and a scal- 
ing holohedry Hs, the latter being based on the invari- 
ance with respect to an indefinite metric tensor for 
the lattice 2 on which M has been embedded. Change 
of the orientation of the lattice within the indefinite 
space by means of a corresponding indefinite 
orthogonal transformation does not change the scal- 
ing holohedry, as already mentioned. Such a transfor- 
mation, however, changes in general the Euclidean 
holohedry of ~£. 

The process of finding for given Hs of M the largest 
Euclidean holohedry for .S is the Euclidization of the 
scaling invariant lattice introduced in the previous 
section. 

In that way, indefinite rotations become related to 
Euclidean ones which, under appropriate conditions, 
appear to be the non-reducible point-group elements 
mentioned above. A concrete example which applies 
to the superspace embedding of an octagonal chain 
can help to understand the situation. 

The scaling matrix F(S)  of (3.5) is according to 
(4.8) a negautomorph of the indefinite quadratic form 
(1, 2, 1) defining a natural lattice A2. In the standard 
orientation, one of the basis vectors lies along the 
'space' direction and the second one can be chosen 
along the 'time' axis (as one can see from the quad- 
ratic form given above), so that A2 appears in what 
we may call the 'rest frame'. From a Euclidean point 
of view, A2 is then a rectangular lattice spanned by 
e~ = (1, 0) and 2~/2e2 = (0, 2t/2). Conjugation by 

(cosh a sinh ~ )  

L = \ s i n h a  cosh 

with (5.6) 

tanh a = 2 ~/2- 1 

transforms the lattice vectors (1, 0) and ( -1 ,  21/2) of 
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A2 into 
als = cosh a ( l ,  tanh a ) ,  

(5.7) 
a2s = cosh a(2 I/2 tanh a -  1, 21 /2 - t anh  a) .  

With respect to a Eucl idean or thonormal  basis, these 
same components  define now a square lattice as in 
(3.2). The lattice is still A2, but in another  reference 
frame, as depicted in Fig. 14. Accordingly,  the trans- 
formation (5.6) represents the Euclidization of  the 
lattice A2. In some cases, the Euclidization can be 
trivial, as is the case for the natural  lattice M4 which 
in the centered form M4.1 is a lready hexagonal  in its 
'rest frame'  (see Figs. 10 and 12). In Fig. 15 the 
Euclidization is shown of  the lattice A~, which is at 
the same time also that of  M 3 :  a rhombic  lattice as 
it appears  in the 'rest f rame'  is t ransformed to a 
square lattice in the 'moving frame'  with rapidi ty 
tanh a = 51/2-2. The existence of a Euclidization 
does not mean that it is unique.  

In order  to see in an example the meaning of  what 
has been said about  the compatibi l i ty  between 
isometric rotations and scaling, consider the scaling 
t ransformat ion  N2, which is a symmetry  of the lattice 
A2, now with respect to the square-latt ice basis given 
in (5.7), which is related to the original one of  (4.1) 
by 

al~ = a l ,  a2~ = a2 - 2 a l .  (5 .8 )  

Therefore,  the scaling t ransformat ion  N2 is now rep- 
resented by the matrix F'(N2): 

F'(N2)=(~ ~ ) ( ~  ~ ) ( ~ - ~ ) = ( ~  ~ ) .  (5.9, 

One then verifies that it t ransforms (modulo  2 "°) the 
point  (½, 0 ) = 1  ~al., into the point  (0, ½) = 1 ia2s , whereas 
it leaves the point  (½, ½) invariant,  in the same way as 
is achieved by a rotat ion of  -rr/2. 

Of  course, much more has to be said about  such 
hidden relations between Euclidean and non- 
Euclidean crystal lographic t ransformat ions  in order  
not to be misleading. 

The validity of  the considerat ions made is not 
restricted to the rank 2 case, as one can see from a 
mult imetrical  embedding of  the rank 4 module  of  the 
octagonal  tiling considered in § 2. 

The superspace embedding  of  the four generators  
of  the vector module  M indicated in Fig. 2 is given, 
with respect to a Eucl idean or thonormal  basis, by 

al~ = (1,0,  1,0) a2s = 2 - z / 2 ( 1 ,  1 , - 1 ,  1) 
(5.10) 

a3.~ = ( 0  , 1 , 0 , - - 1 )  a4., =2 -~ /2 ( -1 ,  1, 1, 1) 

and the Eucl idean metric tensor is that o fa  hypercubic  
lattice: 

ge=  0 2 " (5.11) 

0 0 2 

One verifies that indeed the generators of  the rota- 
tional point  group HR indicated in (2.7) leaves this 
metric tensor invariant.  

The orientat ion of the same set of  basis vectors 
a ~ , . . . ,  a4~ with respect to an indefinite or thonormal  
metric tensor with diagonal  elements (1, 1, 1, 1) is 
then 

al.~ = 2'/2[0, O, 1, O] a2.s = [1, 1, O, O] 
(5.12) 

a3., = 2'/2[0, 0, 0, 1 ] a,s = [ i ,  1, 0, 0] 

and again the lattice is hypercubic ,  but now according 
to the indefinite metric tensor  ( oo i) - 2  0 

g i=  0 2 " 

0 0 0 - 

(5.13) 

One can now also verify that the scaling matrix given 
in (2.5) is a negautomorph:  

P(S)g,r(s) = -g , ,  (5.14) 

equivalent  to the corresponding rank 2 t ransforma- 
tion N20) N2. 

In the present case, the relation between 
the indefinite or thonormal  basis vectors 
[ 1, 0, 0, 0 ] , . . . ,  [0, 0, 0, 1 ] and the two-dimensional  
sublattices A2 arises as a combinat ion  of  al., and a3~, 
respectively, and the centering of  the square lattice 
generated by [ 1, 0, 0, 0] and [0, 1,0, 0]. 

The various shapes occurring in the octagonal  tiling 
represent the projection of  three-dimensional  faces 
of four-dimensional  hypercubes  (Fig. 16). 

6. S c a l e - s p a c e  g r o u p s  for  q u a s i c r y s t a l s  

The concept  of  scale-space groups was in t roduced by 
Janner  & Janssen (1990) and considered further by 
Janner  (1990a, b) and Janssen (1990). 

0110 

~ 0100 

~0110 I]11f] 

*1100 

0000 ~000 

oooo ~ o - o  

O00i I001 
Fig. 16. Three-dimensional faces of hypercubes appearing in the 

octagonal tiling from a projection on the plane of points of a 
cubic lattice in four dimensions. 
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In § 2, the holohedra l  scale-rotational point  group 
HSR of a given vector module  M of rank n has been 
introduced.  On a basis a i , . . . , a ,  of M, the point  
group HSR is represented by a set of  integral matrices: 

r l  

Ta, = E aft) , (T),  T ~ HSR. (6.1) 
j = i  

After embedding  M on an n-d imens ional  lattice 
generated by the basis a ~ s , . . . , a s ,  and through the 
correspondence 

a~-~ a~, = (a~, a~,), i = 1 , . . . ,  n, (6.2) 

the elements T become a point-group t ransformat ion 
for ~Y in terms of the same set of  matrices: 

Ta,.,= £ aj.~Fj,(T), T~HsR. (6.3) 
j = !  

In order to be able to say that the lattice ~ is left 
invariant  by T, the concept  of a metric is needed 
[otherwise one could say that the whole group 
Gl(n, Z) leaves ~ invariant] .  As we have seen, there 
is no unique metric in the superspace which is left 
invariant  by Hst~ and if one cont inued in that direc- 
tion one would arrive at the concept of  mult imetrical  
space, as briefly discussed in the previous section. 

Here, we do not want to develop that approach  
further and in what follows we consider  the super- 
space as being an affine space V~. only and we define 
the holohedry of  the lattice ~ as being that of  the 
homothet ies  of  the vector module  M one gets from 
the orthogonal  projection of ~ in the external space. 

A point group K is then a subgroup of  HSR and 
is called a scale-rotation point  group. 

A scale-space group G is a subgroup of  the affine 
group A(n), an extension of  the lattice translat ion 
group U(n) by the point group K. 

When referred to a basis of  the lattice, the group 
G is fai thful ly represented,  as usual, by a set of  
matrices. In the Seitz notat ion we write for the ele- 
ments of  G: 

g={TIt}-,a(g)={l-'(T)l(t,,...,t,)}. (6.4) 

A scale-space group generates in V~ a set of  
equivalent  points having lattice periodicity. By strip- 
projection, one then obtains in physical space a set 
of  equivalent  points for the quasicrystal  structure. 
Inf la t ion/def la t ion for the equivalent  quasicrystal  
points is only verified if  appropria te  condit ions are 
imposed on the strip defining the occupied positions 
among those possible. Different strips can occur for 
different sets of  equivalent  positions. 

Conversely,  consider  a set of  points in space 
defining the quasicrystal  structure and thus a vector 
module  M and a scale-rotation holohedry HsR. The 
embedding  of  M on 2 yields a lattice periodic pattern 
in superspace.  Its symmetry,  consisting of all affine 

t ransformat ions  leaving the pattern invariant  and 
satisfying the addi t ional  requirement  of  having: 
as pure translat ions:  the elements of  the lattice transla- 
tion group U(n) of ~ ;  
as homogeneous  components:  the elements of  a point  
group K c HSR ; 
is then a scale-space group. 

It is because of the lack of metrical condi t ions that 
the admit ted t ransformat ions  have been restricted in 
order to ensure a structural interpretat ion of these 
symmetry elements.  

Instead of developing further the theory of scale- 
space groups, let us consider  an example  compat ible  
with the one-d imens iona l  octagonal tiling with vector 
module  M ° =  M [as in (3.1)] embedded  in a scaling- 
invariant  lattice A2. The rotational holohedry  of M 
is He = 1, because it is one dimensional .  The scaling 
holohedry  is Hs = :2= {N2} and this results in the 
infinite cyclic group generated by S = N2 as defined 
in (3.5) and (4.3). (In fact, that is not fully true because 
mirrors have been disregarded but that is not essential 
here.) So, the holohedra l  point  group of  M is 

Hsg = i:2 = {i, N2} (6.5) 

and we consider  the symmorph ic  scale-space group 
G=A212 having lattice A2 and point  group 

- - v  

K = 1 2 .  
In order to characterize in terms of Wyckoff posi- 

tions the set of  equivalent  points representing atomic 
arrangements ,  only posit ions of finite mult ipl ici ty 
have to be considered (only those having a relatively 
low mult ipl ici ty are structurally relevant). Such posi- 
tions are characterized by the fact that they have at 
least a site symmetry  N~, for some integral value k. 

As already ment ioned in § 4, the set of  points with 
site symmetry N~ k, forms a lattice A,,.k having A v as 
sublattice. One can show that the index of A v in A..k 

! 
i 

, "  2 . !  

• ~ y- . . . . . . . .  - 4 , -  - - I  

/ i 

i T 
. . . . . .  • ~ . . . . .  - e ~  . . . .  ~ ID  

A 2 2  

- 7, r .  . . . . . . . .  . . .  . - - !  

I • • • • • 

' . i  , . . . . . . . t  • ~ .  • . ~ . - ~  

A 23 A 2,t, 

Fig. 17. Lattices Az.k consisting of the points having site symmetry 
N~ = ~k in the frame where A2 appears as a square lattice. 
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~ v  

Table 1. Equivalent positions in GSR : A212 

Multiplicity 
Wyckoff letter 
site symmetry 

1 l(a) i~ 
1 l(b) i~. 
2 2(a) i~ 2 
6 3(a) ~3 
6 3(b) ~ 3  

4 4(a) ~4 
8 4(b) ~14 
8 4(c) ~4 
8 4(d) ~4 

. . . . . . . . . .  

Coordinates 

0,0 
~,~ 
L0 0,~ ~_,~ ~,~_ ~_,4 $3 ~,s 3, 
5 3 13 5 3 13 I I  1 9 11 I 9 

t ! 3_1_ ~, t 
/ , 0  I_.1 1 t 3 ,  1 3  3 t 2,4 a,~ 0, a 0 ~,a 4,~ 0,~ 
, ~ ,  7 ~,7 ,~ , ,  77 ~,7 ~,~ ~,~ ~,~ ~ ~'~ 8,~ 8,~ ~, 

I 3 5  3 I 5 3  5 5  7 5  3 

is given by 

index (A,, c A~.2k+~)=lAqk(v)l (6.6) 

index (a~ c a,.2k)=lAqk(v)--21 (6.7) 

where 
Aqk(v)=qk+~(u)+qk_~(U), (6.8) 

with qk(V) a generalized Fibonacci number, the 
solution of the recurrency relation 

qk+l(V)= Vqk(v)+qk-~(V) (6.9) 

with initial values qo(v)=0 and q~(v)=l .  In par- 
ticular, for v = 2 the index Ik of A2 in A2,k is given by 

k 1 2 3 4 5 . . .  

Ik 2 4 14 32 82 . . .  

In Fig. 17 the lattices A2.k for k = l ,  2, 3, 4 are 
represented in the framework obtained from A2 in 
the 'rest frame' by Euclidization as in (5.6), with 
tanh a - - 2 1 / 2 - 1 .  One sees that only A2,3 is not a 
square lattice, but it becomes so if one considers the 

-- . . . .  
-,a 

/ 

// 
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,#0,~ ! ." .. 
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~" " --,c, I 
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.... ~. 

Fig. 18. Scaling invariant decoration of the one-dimensional 
octagonal tiling arising from points at the Wyckoff position 2(a) 
of  the scale-space group G = A2T~ with fractional coordinates 
0, ½ and ½, 0 (see Table 1). Only the positions within a given strip 
region (the so-called occupied positions) result by projection on 
the physical space V in the points of  the decoration. This 
decoration satisfies the same inflation-deflation rules as the 
tiling. 

alternative Euclidization by tanh a = 7 - 5 x 2 ~/2. The 
coordinates of the points are given with respect to 
the square-lattice basis of A2 as in the figure men- 
tioned above. The matrix representing N2 is then as 
in (5.9). 

Using these_results, one finds that the scale-space 
group G = A212 is generated by 

G =  {( I '  0)' (0' I) '  ( -10 - 0 1 ) ' ( ~  10) } (6.10) 

with (1,0)=a~s and (0, 1)=a2s spanning a square 
lattice. Of course the latter property is not relevant 
here because we deal with an affine space. 

The Wyckoff positions having low multiplicity are 
given in Table 1. 

As already said, a set of equivalent points in the 
superspace only defines possible equivalent positions 
in space. It is the subset of the occupied positions 
which appears as set of equivalent points of the 
quasicrystal structure. In Fig. 18 it is shown how a 
'decoration' of the one-dimensional octagonal tiling 
satisfying the same inflation-deflation rules as that 
tiling arises from the Wyckoff position 2(a) of a A212 
invariant pattern within an appropriate strip region. 

7. C o n c l u d i n g  r e m a r k s  

In this paper the starting point was a pattern observed 
by high-resolution electron microscopy of a quasi- 
crystal in the octagonal phase and that pattern has 
been analyzed on the basis of a two-dimensional 
octagonal tiling. Step by step, new concepts have been 
introduced, showing how rich crystallography 
becomes once having passed 'through the looking 
glass' of plane reality. That reality is nevertheless 
essential because it is to obtain a better understanding 
of the complex crystallographic order observed in 
nature that the effort has been made. 

It has been shown how it is possible to return from 
the superspace to the physical space, but the applica- 
bility of scale-space-group symmetry to existing struc- 
tures has still not yet been demonstrated. Those who 
followed this exploration done in the spirit of Caro- 
line MacGillavry will understand why it is not at all 
easy to give an answer to the question appearing as 
the title of this paper. 

The partial support of the Stichting FOM of the 
Dutch National Science Foundation is gratefully 
acknowledged, as well as the stimulating views of my 
collegue T. Janssen. 

A P P E N D I X  
G l o s s a r y  o f  s o m e  bas ic  t erms  

Vector module M 

It is defined in an m-dimensional space V (that of 
the quasicrystal) as the set of all integral linear combi- 



A. J A N N E R  589 

nations of  n basic vectors at ,  • . . ,  a , ,  where n > m, 
so that the basic vectors are l inearly dependen t  on 
the reals. Usually,  n is chosen in such a way that 
these vectors are l inearly independen t  of  the rationals.  
Consider  for example  in two dimensions  (m = 2) a 
fivefold rotation R and an arbitrary vector at. The 
vectors a l ,  a2= Ra~, a3= R2a~, a 4 =  R3a~ are 
rationally independent ,  whereas if  one adds a5 = R4a~ 

5 
they are not any more because Y.i=~ ai = 0. The set 
{ a l , . . . , a 4 }  forms a basis for M which is a vector 
module  of rank 4 and d imens ion  2. It is sometimes 
convenient  to consider  M ' = { a t , . . . ,  as} and not M 
for reasons like those leading to the preference of  a 
non-primit ive lattice basis instead of  a primitive one. 

Superspace V~ 

It is a h igher -d imens ional  space having the same 
d imens ion  n as the rank of M and containing the 
space V of the quasicrystal  as a subspace. 

Crystallographic lattice 2; 

It is defined in V, and is spanned  by the basis 
a t s , . . . ,  a , ,  yielding by orthogonal  projection on V 
the basis a t , . . . , a ,  of  the vector module  M. This 
projection is 1 to 1 if  the vectors a t , . . . , a , ,  are 
rat ionally independent .  The lattice 2; describes the 
translat ional  symmetry of  the quasicrystal embedded  
in the superspace.  Occupied  atomic positions in space 
differing by vectors projected from the lattice 2; are 
considered to be ' t ransla t ional ly '  equivalent.  

Rotational point group g R 

The rotational point group K R of the quasicrystal  
consists of  m-d imens iona l  rotations of  finite order, 
which on the given basis of  the vector module  M 
define a group of invertible n × n matrices with 
integral entries. In V~ there exists for 2 a Eucl idean 
metric t e n s o r  (ge)ik = ai~. ak.~ left invariant  by these 
t ransformations,  which therefore are elements of  an 
n-d imens iona l  crystal lographic point  group rep- 
resenting the rotational point  group of the embedded  
quasicrystal.  

Superspace group Go 

It is the space-group symmetry  of  the quasicrystal  
embedded  in the superspace.  It has 2 as lattice sym- 
metry and g g a s  point  group. We recall that only in 
the symmorph ic  case (where Go is the semi-direct  
product  of  the group of  lattice translat ions with K R) 
does the point  group KR leave the quasicrystal  pattern 
invariant.  

Scaling point group Ks 

The scaling point group Ks of  the quasicrystal  
consists of  m-d imens iona l  scaling t ransformat ions 

(i.e. discrete dilatations,  possibly combined  with rota- 
tions), which on the given basis of  the vector module  
M become invertible integral n x n matrices of infinite 
order. Therefore,  no invariant  Eucl idean metric in n 
d imensions  exists for these t ransformations.  In all the 
cases investigated so far, there exists, however,  an 
indefinite metric tensor gi for the lattice 2 expressible 
in terms of scalar products between lattice basis vec- 
tors (gi)hk = ah.~ o a k  x left invariant  by the point  group 
Ks. Accordingly,  this group consists of  crystallo- 
graphic hyperbol ic  rotations leaving 2; invariant.  
With respect to the indefinite metric, the space V of  
the quasicrystal  is such that these hyperbol ic  rotations 
leave V invariant  and become scaling t ransformat ions  
once this subspace V is considered Euclidean.  

Scale-space group G 

It is the symmetry group of the quasicrystal  which 
also includes scaling t ransformations.  It has £ as 
lattice of  symmetry t ranslat ions and a crystallo- 
graphic  point  group K generated by K g and Ks. The 
Eucl idean subgroup of  G is the n-d imens iona l  space 
group Go considered above. 

Automo~h 

A metric tensor gig defines on a lattice an integral 
n 

binary  quadrat ic  form Q = ~.k gikXiXk in the coordi- 
nate variables x l , . . . ,  x,  of  the lattice points. A l inear 
non-s ingular  t ransformat ion A with integral entries: 

rl 

Xi'-~Yi----~k AikXk leads to an equivalent  quadrat ic  
form Q'. If Q = Q' the t ransformat ion A is said to be 
an au tomorph  of the quadrat ic  form. From a crystallo- 
graphic  point  of  view, a rotation leaving the lattice 
2 invariant  is an au tomorph  of  the quadrat ic  form 
associated with the metric tensor ge of the lattice. 
Point-group symmetries  are thus au tomorphs  of the 
integral b inary  quadrat ic  form defined in terms of a 
basis of  the lattice. 

Negautomorph 

Consider  an invertible integral t ransformat ion N 
as A above but now such that Q ' = - Q .  Then N is a 
negautomorph  of  the quadrat ic  form Q. Such point- 
group t ransformat ions  are of importance in the case 
of an indefinite b inary quadrat ic  form (i.e. when the 
metric tensor is indefinite as the gi considered above). 
As a s imple example,  consider  in the plane two basis 
vectors at and a2 with metric tensor defined by 
at o at = I, a 2 o a 2  =_ - I  and at o a2 = 0. The vector I = 
at + a2 has then length zero as I o l = 0. Such a vector 
is said to be isotropic. Cons ider  

I0) ' 

which is a mirror  leaving ! invariant.  Then the quad- 
2 2 

ratic form 0 = x t - x 2  is t ransformed by N into 
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2 =  Q ' = x 2 - x ,  -Q .  So N is a negautomorph of Q. In 
general, the product of  two negautomorphs  is an 
automorph.  

Minkowski plane 

Consider  the two-dimensional  space- t ime spanned  
by a~ and a2. lts points x = x , a , + x 2 a 2  are called 
'events '  and have a space and a time coordinate (r, t). 
Mul t ip lying the time coordinate  by the speed of light 
c (normalized to l), it also becomes a space coordi- 
nate. So we can put Xl = r, x2 = ct = t. Lorentz transfor- 
mations L are l inear t ransformat ions  in the space-  
time leaving the light velocity invariant  and thus also 

2 x22. A light wave propagates along the value x , -  
events for which one has x, = ±x2. Accordingly,  al + 
a2 are called light directions, where a~ is along the 
space axis and a2 along the time axis. Note that the 
metric tensor glt : at o at --- 1, g22 : a2 o a2 = - 1 ,  gt2 = 
a, o a2 = 0 is left invariant  by the Lorentz t ransforma- 
tion L which is therefore a hyperbol ic  rotation of the 
Minkowski  plane. The scaling t ransformat ion 
induced by L along the light cone corresponds to the 
red shift (dilatation) or to the blue shift (contraction) 
of  a light wave emitted from a moving source. 
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Abstrac t  

An efficient procedure for calculat ing the contr ibut ion 
of  the thermal  diffuse scattering to the absorptive 
form factor is outlined. For an isotropic Einstein 
model  all integrations could be performed analyti-  
cally by using suitable functions to fit the elastic 
electron scattering ampli tudes.  The result is cast into 
a function subroutine which is available upon request. 
Computed  values are compared  with previous calcu- 
lations and with measurements .  

I. Introduct ion  

The quanti tat ive interpretat ion of electron diffraction 
patterns requires a compar ison  of the recorded pat- 

0108-7673/91 / 050590-08503.00 

terns with calculat ions (Steeds, 1983). To perform a 
computa t ion  the Fourier  coefficients of  the lattice 
potential must be known. In a first approx imat ion  
one considers only elastic scattering. In practice, 
however, inelastic processes scatter electrons out of  
the Bragg reflections into the background causing an 
at tenuat ion of the reflections. The removal of  elec- 
trons from the Bragg reflections can be described as 
an absorption.  This absorpt ion together with the 
increased background very severely affects the con- 
trast in diffraction patterns, especially in the case of  
h igh-Z  materials.  The at tenuat ion of the reflections 
can be incorporated into the dynamical  theory by 
adding an imaginary  part to the crystal potential 
(Yoshioka,  1957). ~Fhe calculat ion of the diffuse back- 
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